Nested linear low-gain design
for semiglobal stabilization of feedforward systems*

We show that semiglobal stabilization of a large
class of feedforward nonlinear systems is
achieved by low-gain linear feedback provided that
the separation of the gains is sufficient.

Particular situations are identified where the tuning
of the gains only requires increasing powers of a
single parameter.

A recursive tuning of independent parameters is
necessary in the general caseto avoid vanishing
regions of attractions.
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1 Introduction

This paper deals with the problem of semiglobal stabilization of nonlin-
ear systems by using linear feedback: given the system
F(z) + G(z)u, (1.1)

=

F0)=0, z€ R

whose Jacobian lingarization is controllable, when and how is it possi-
ble to tune the gains of a linear controller u=Kx in order to include an
arbitrarily large bounded prescribed set in the region of attraction of the
equilibrium x=07

Since its original formulation in [1]. the above problem has stimulated
important contributions under the fcrm of necessary or sufficient struc-
tural conditions on the nonlinearities of (1.1) to achieve arbitrarily large
regions of attraction.

Regarding the necessary conditions, counterintuitive obstacles to
semiglobal stabilization have been discovered in the analysis of the
peaking phenomenon [12, 2, 11].

Regarding the sufficient conditions, most results have been derived
from the simplification of nonlinear designs which achieve global stabi-
lization.

Thus, for sirict-feedback systems

z fz) +glz
& = &+ 11(~u’§1) (12)
é,, = u+az,€&,...,6)

which consist of a core system 2 = f {z) controlled through a chain of
nonlinear integrators with all the nonlinearities in feedback form, the
backstepping methodology provides a recursive construction of a Con-
trol Lyapunov Function [9] which can be employed for the design of a
globally stabilizing control law.

A similar recursive approach shows that semiglobal stabilization can be
achieved by linear {high-gain) feedback, provided that the separation
between the different gains of the control law is sufficient.

The linear semiglobal design results in a drastic simplification over the
Lyapunov global design but an insufficient separation of the gains may
cause the region of attraction to shrink.

These results are well decumented in the literature (see for instance (10,
chap. 6] for a survey and additional references, including [13].

As a complement to backstepping designs, forwarding Lyapunov
designs have recently been developed [10, 8] for the global stabilization
of feedforward systems

‘E:] == ’51""1(5”1 2 y'g‘[hz) +¢1(£2:"')En! ) +Tv[, (‘-_.'Z! “)Enx
5’1 = &2}1”(651 T 'm: +¢"2(£3;"'a'£m ) +L"’{E‘h 'sk,ns
_ (1.3)
&_u—l — gu—!h'n—l(gna Z) (f)u I(Ena ) =+ U“‘n I(Em ~)

5,” = énfn(z) + (f)n(z) + 111”(~) L

[(2) + g(z)u

-~
z

which consist of a core stable system z = f z) augmented by a chain of
nonlinear integrators with all the nonlinearities in feedforward form.
The forwarding methodology provides a recursive construction of a
Control Lyapunov Function (CLF [9]) which can be employed for the
design of a globally stabilizing control faw.
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The objective of the present paper is to show that, similarly to the case
of systems in feedback form, semiglobal stabilization of feediorward
systems is achieved with a {low-gain) linear feedback.

It has been shown ([7]) that a low-gain strategy with a single tunable
parameter achieves semiglobal stabilization when the core system is
augmented by a chain of integrators.

We show that, when linearly bounded nonlinearities in strict feedforward
form are added to the integrators, the same results holds.

In the general case (1.3), the separation between the different gains of
the control law must be sufficient because an insufficient separation of
the gains may cause the region of attraction to shrink; the single param-
eter approach has to be replaced by a recursive approach which allows
a sufficient separation of the low gains.

In addition to this asymptotic result, we also show how the Lyapunov
functions constructed in the recursive global Lyapunov designs can be
employed to tune the gains of the linear controller in order to achieve a
prescribed region of attraction.

QOur results complement the existing semiglobal results for the systems
{1.2) and show that semiglobal stabilization by linear feedback can be
achieved for any nonlinear system which can be obtained by successive
backward and forward augmentations of a core stable subsystem,

Our nested low-gain linear design can be comparad to the nested sat-
uration design of Teel [14] for strict-feedforward systems, that is, when
the functions i in {1.3) are identically zero.

Teel showed that global stabilization results can be obtained in this case
if the linear gains are replaced by nonfinear saturations.

The nested saturation design also requires a sufficient separation of the
1 (nonlinear) gains to achieve global stabilization.

I The paper is organized as follows.

In Section 2, we describe the two building blocks of recursive semiglob-
al designs, that is, the semiglcbal stabilization by linear feedback of the
backward and feedforward augmentation of a stable subsystem by one
integrator,

In Section 3, we extend the semiglobal result to a parficular class of
feedforward systems (1.3) for which the different gains of the linear con-
troller can be tuned with increasing powers of a single parameter e.
We also show through simple examples that such a tuning of the gains
does not allow the semiglobal stabilization of general feedforward sys-
tems and may lead to vanishing regions of atiraction.

The general case is then treated in Section 4, through the recursive
application of a semiglobal forwarding result.

e e s o e

2 Backstepping and forwarding an integrator
with linear feedback

The two building blocks of recursive designs consist in the backward
and feedforward augmentation by one additional integrator of a core
system

Z'=f(z)+g(z)u, f(O) =Oy z = (21,...'ZP)TE_ZRP (2.4)

for which we assume that the equilibrium z = 0 of z = f (z) is globally
asymptotically stable (GAS) and locally exponentially stable (LES).

By standard converse thecrems (see Appendix), there exists a smaoth
Lyapunov function U(z) which satisfies the following for some constants
wand a:>0:

(i) Vz € RP: ay|z]|> < U(2)
(i) Vz € R : LU(z) < —an2|?

A backward augmentation of the system {2.4) by one integrator results
in

z

3

f(2) +9(2)¢

u

(2.5)

The high-gain feedback u = -k¢, k large, enforces a time-scale separa-
tion between the convergence of £({) to £ = 0 and the remaining dynam-
ics z=1z).

An estimate of the region of attraction is obtained by taking the time-
derivative of the Lyapunov function V = Ufz) + 1/28, which is

V = L;U(2) + LyU(2) — k€ < —a|2]]? + L,U(2)€ — ke?
Completing the squares, we obtain that Vis negative definite in the set
0 where |LU{z)] < 2Vka|z|. This means that the region of attraction
contains the largest level set of V contained in {1. Because V is inde-
pendent of k and ) tends to the entire state space as k - «, the control

law u = -kt achieves semiglobal stabilization of the equilibrium (z.£) =
{0,0).

A forward augmentation of the system (2.4) by one integrator results in

£

z

21

f(2) + g(z)u

The linear change of coordinates

(2.6)

y=E+q"2 g=-FTe;, F=Df(0), e =(1,0,...,07 27)
transforms (2.6) into

v = g'9(z)u+d"fi(2)
i = f(2)+e()u

where fi (z) = £ {z) - Fz only contains the nonlinear part of  (2). I the Jaco-
bian linearization of (2.6) is stabilizable, then g'g(0} # 0 and we assume
(up to the multiplication of y by a constant) that g'g{0) = 1, that is,

0"9(2) = 1+ ¢"qu(2), a1(2) := g(2) — g(0)

{2.8)

Instead of the high-gain employed for the system (2.5), we now use the
low-gain feedback

U= —gy, 2.9

where a small value for € > 0 enforces a time-scale separation between
the convergence of z to a neighborhoed of z = 0 and the remaining
dynamics y= - y + 0(/z|p).
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An estimate of the region of attraction of the equilibrium (y,2) = (0,0) is
obtained by using the Lyapunov function (8]

U(=)
Vi) = T4y =1+ [ (s)ds

where +(s) is a positive non integrable function to be determined
(oyis)ds = += is necessary to ensure that V is radially unbounded).
The time-derivative of V along the solutions of (2.8) is

2.10)

. y2 y T
= - 2 U LU + —— z
where the cross-term
?2
Yy, 2) = — " 01(2) = YU (2)) LU =)y

vty
satisfies (0,2) = (y,0) = 0, Dils(y,0) = G, and Di{0,2) = 0.
The terms independent of e satisfy

VI+y?

Because g'fi(z) is at least quadratic near the origin and U is radially
unbounded, we can construct a function (s) = 1 such that, for all z,

NU() LU + < —1U)eell=l? + lg" fi(2)]

~1{(U(2))eal|2l? + le" f1(z)] <~z

With this function v, we have completed the definition of the Lyapunov
function (2.10). Let {} be the desired region of attraction of (£2) = (0,0).
Because V is radially unbounded, we can choose K large enough such that

Qc Uy ={(&2)|V(y,z) <K}

Inside the compact set x, there exist constants k> 0 and k2> 0 such

that |v(y, 2)| < kalyl||z|} and \/L_y > ka. . The time-derivative V

then satisfies in Ux

V(y,2) € —eky’ + ehalyll|zl] — aal|2]?

Completing the squares, we conclude that V is negative definite inside
U provided that the constant e > 0 is chosen small enough to satisfy

4—."-620’2
k3
We conclude that the region of attraction increases to the whole state

space as € —+ 0, which proves the semiglobal stabilization. Local exponen-
tial stability follows from the fact that V and V are quadratic near the origin.

ErE

Two conclusions must be retained from the above analysis: on the ane
hand, an asymptotic result, which guarantees that the linsar low-gain
feedback {2.9) achieves stabilization in any given compact set provided
that the gain e is sufficiently low (which had already been proven in [7)).
On the other hand, the determination of an upper-bound on e from the
Lyapunov function (2.10} in the case when a Lyapunov function is known
for the subsystem z = fiz).

In the next two sections,we will extend these conclusions to more com-
plex situations in which several integraiors are added to the original sys-
tem, with nonlinearities in feedforward form.

37

3 Forwarding a chain of integrators
with linear feedback

The next result extends the construction in Section 2 to a forward aug-
mentation of the core subsystem by a chain of integrators.
The analog result for a backward augmentation can be found in [13].

Theorem 1 [7] Consider the system

-

3 £

L =&

, @3.11)
é_'nfl == En

én =

= f(2)+9(z)u

where £ e H7and z e % Assume that the Jacobian linearization of (3.11)
is stabilizable and that the equilibrium z = 0 of z = f{z) is GAS/LES. Let
p(s) = 57+ @'+ ... + &S + a be an arbitrary Hurwitz polynomial.
Then the feedback

u=— (aqe"l‘;'l +a €+t Gnoa€ Gy + a,l_lcy"}&w)

where y» = & + ¢’z as in (2.7), achieves semiglobal stabilization of {£ ) =
(0,0), that is, the region of attraction of (£,2) = (0,0) tends to entire state
spacease 0.

Proof: Using scaled coordinates as in [7]
y=€eEVe e {1,--,n—1}

and y» as in (2.7). Let A be the controller form matrix with characteristic
polynomial p{s) and let P > 0 be solution of the Lyapunov equation AP
+ PA = -I. Then we use the Lyapunov function

(=)
Vg, z2) =/ 1+yTPy—1 +f y(s)ds
0

where y(s) is a positive non integrable functicn.

Proceeding as in section 2, we achieve semiglobal stabilization and V
can be employed to obtain an upper bound on € such that the system
is stabilized in an a priori fixed set.

(3.13)

The above result can be extended to strict feedforward systems under
a lingar growth assumption for the nonlinearities:

5:1 = Lo+ di(loyriEnyzu)

&a = & +¢“.’(£3""1£mz= U')

. {3.14)

g‘n—l = 611 B én—l(gmzs ’LL)

5:1 = 1+ ‘i’n(z: h’,)

Po= () +e(z

where &(0, ..., 0) =0 and
[l(Eesrs- - B zdll £ 2 (1 (& 2oy DUII{T 4 06a]) + (S &) 1)

forie{l.---.n—1} 315)

<

llbn (2,0} | lizhilel (1 (= u) 1)

for some C' positive functions v:.

Two terms concerning the & states can be distinguished in this bound:
the first one imposes that the dependence of ¢ in . is at most linear, and
must appear in terms proportional to |zj; the second term of the bound
restricts the allowable nonlinearities in (.-, ..., &) to linearly bounded ones.
Much more freadom is allowed for the nonlinearities in &, z, and u.

a
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The proof of Theorem 1 is easily adapted: those nonlinearities only add
two kind of terms to the derivative of the Lyapunov function: a cross
term eli(x,y) and a term of the form eki)f}, both of which do not disturb
the proof.

In contrast, when the growth assumption (3.15) is removed, the control
law does not achieve semiglobal stabilization for general strict feedfor-
ward systems. This is illustrated by the following examples.

'5:1 = bLtz—(b+2)
3

A

—z+4u

ra

e
I

Example 1 The system

has the strict feedforward form (3.14) but does not satisfy the growth
assumption {3.15) because the nonlinearity is not proportional to z: the
first part of the constraint is not satisfied (moreover, the & term is cubic).
The application of Thearem 1 leads to the change of coordinaies y: = &
+ 2, which yields

& = -y
h = u

The control law of Theorem 1 is v = ez = €& and, using the scaled coor-
dinate y1 = ek, the closed-loop system is

Loy = ypo—gB
A (3.16)
W2 = —He—uir

The set

E={{nvw)ln-n=2 pn=>1}

is invariant, that is, the solutions of (3.16) starting in £ remain in £ for all
t = 0. This is verified by showing that initial conditions on the boundary
of E do not leave E: Defining £ = y: - y1, we have

U lp=1=€(C—2) 20 if (> 2

and
P lp=r=e((—2)>0if(>2

Because E is invariant and does not contain the equilibrium (., y2) =
(0,0), it has no intersection with the region of attraction, regardless of e
> 0. In particular, the region of atiraction does not extend along the axis
£ = 0 beyond the paint (£:(0), y2(0)) = (11(0), y=(0)) = (0.2).

In the above example, the region of attraction is limited in one direction
of the state space as e + 0. The situation can be even worse.

The following example shows that the region of attraction may decrease
with e and even vanishas e » 0.

JOURNAL
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Example 2 Consider the feedforward system

& = &+&
& = &

53 = £tz
5.4 = &

z = —zu

We have two periurbations in comparison with the simple 4" order inte-
grator: the z term in equation (3.18), which satisfies the growth con-
straint and the £ term in equation (3.17), which is not linearly bounded
{the second part of the bound is violated).

Placing ihe poles of the Hurwitz pelynomial in -1, we design the control
law according to Theorem 1 and obtain;

= —c'€; — de'Ey — 6e®&y — de(&y + 2)

Using the change of coordinates (y, v, Vs, v = (7% £ % 6% 6 28,
the closed-loop system is:

1

{.Th = Y2ty

f?}z = 3

;fis =

U = =y — Ays — Gy — dyy

Simulations show that a solution of this system with initial condition (y:,
¥z, 3, ya) = (0,0,0,30) grows unbounded.

In the original coordinates, it means that the closed loop system with ini-
tial condition (&, &, &, &, 2) = (0,0,0,30Ve, 0) is unbounded. It shows
that the region of atiraction shrinks in the &:direction whene + Q.

This could be interpreied as follows: while £:+ z converges to the origin
at a rate of arder ¢, there is a peak of order 1/e in & and of order 1/2e in
&. The peak of the & variable will be of order 1/4e because of the £
term.

Without this cubic term, the variable would have peaked at an order of
1/3¢, which would have not destabilized the system and would have
allowed the region of aftraction of the origin to extend while we
decrease e.

In the next section we will see that the vanishing region of attraction in
Example 2 is due to an insufficient separation of the gains e ase * 0.
The class of strict-feedforward systems (3.14} with a linear growth
assumption (3.15) thus covers a special situation in which several inte-
grators can be forwarded in one design step, the different gains of the
controller being tuned with increasing powers of a single parameter e,
To avoid vanishing regions of attractions in the general case (1.3), it will
be necessary to proceed in n different steps, a new funing parameter e
being defined at each step.
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4 Recursive semiglobal stabilization
of feedforward systems

To achieve the semiglobal stabilization of feedforward systems (1.3) in a
recursive way, we will now extend the result of Section 2 in two direc-
tions —compare with (2.6): first, to allow a recursive application of the
result, it is necessary to start from a core system which is not neces-
sarily GAS: we will only assume that the equilibrium z = 0 of z=f(z} is
locally exponentially stable (LES) and has a region of attraction - which
contains the compact set (1. C & to be included in the prescribed
region of attraction.

This is enly a minor madification with respect to Section 2 because, as
shown in Appendix, converse theorems guarantee the existence of a
Lyapunov function U(z) which satisfies the following for same consiants
w, o2 > 0 (34 denotes the boundary of A):

(i) a2l < U(z) and lim,_,54 U(z) = o0

(i) LyU < —anflz)

A second extension with respect to Section 2 is that we consider the
more general forward augmentation

g‘? — 1( ) + Eh;g( ) + h.g(z)'u, h](o) =) (422)
¢ = f(z)+g(z)u
where h (0) = 0 and h: {z) is at least guadratic near the origin, that is, h:

(0) = 0 and Dh:(0) =
The linear change of coordinates
y=E(+q"2, ¢ = -Dh(0)F

transforms the first equation of (4.22) into

7 = (ha(0) + ¢"g(0))u + h.o.t.

where h.o.t. denotes higher-order terms. if the Jacobian linearization of
(4.22) is stabilizable, then k:(0) + g'g(0) = 0. Up to the multiplication of y
by a constant, we assume without loss of generality that h:(0) + q'g(0) =
1. We then rewrite the system (4.22) as

g = h(2) +yhalz) + (L+RTz+ ha(2))u, 423
z = f(z)+g(z)u
where
Pu(z) == hy(2) = Dhy(0)z = hy(2)q7 24 ¢7 (f(2) = F2), Ry (0) =0, Dh,(0) = 0
and

BTz 4 ha(2) == hs(z) — ha(0) + q7{g(2) — a(0))  hy(0) = 0, Dhy(0) = 0

Then we have the following result.

Theorem 2 Let () = ()£ x {): C & x :1be any compact set. Then there
exists € > 0 such that, for all 0 < e = ¢, the equilibrium (£, 2) = (0,0) of
{4.22} is locally exponentially stable with the control law 1 = -ey and the
region of attraction includes (1.

Proof: We define the Lyapunov function

U(z) Y
Vg, 2) =]ﬂ (s)ds + In(1 +y?)

where y(s) = 1 is a continuous function so that V{yz) is positive definite
function and radially unbounded in = x 4. lis time-derivative is

27 =y enhg(=))(4.24)

Vig,2) = —c—

L1 ; W v
Thy? Feyrl(z )+ AUV L0+ I?TIJ("AE-)*!/’f:l

where the cross-term (i{y,z) is

Yy, 2z} = -;“‘ha z = y(U)L,U(2)y

Because the functions LU(z),f(z), h-(z), and hs{z) are all at least quadrat-
ic near the origin, and U is radially unbounded in -1, we can choose +(s)
such that

HOVELU +

(hl( Y yha(2) + epha(z) < -z Yz e A

We obtain in th:s way

V<—

+ ed(z,y) — aflz)f?

1+2

The chaice of v completes the definition of V. Because U is radially
unbounded in 4, there exists a constant K > 0 large enough such that
g2 e 2 = (€ 2) e te={(E, )V {y2) = K}.
There exist two constants k: > 0 and k: > 0 such that Wiy, 2) <k y z
= k: inside the compact set 7. Completing the squares. we
conclude that V is negative definite inside 2« provided that
the constant € > 0 is chosen small enough to satisfy
4(Yk2

5
Local exponential stability follows from the fact that V and V are
quadratic near the origin.
A recursive application of Theorem 2 yields the following conclusion.
(The corresponding result for systems in the feedback form (1.2) can be
found in [13]).

Theorem 3 Consider the feedforward system

€ <

‘:fl = 511‘11(52,"'sfn»3) +¢1{bay 0 dn, 2 )+lf’ (‘E vy € 2
3 = &bl Enr2) + dalla, o  Eny 2 Hfalba - Gy 2
";n-l = Lo . 1(15",.,) + e l(l":m:)'i‘wnkl(fmz)u

E‘n . ‘fnhn( ) + ‘f)n( ) + Tr’"n(z)n (425)

f2) +

where for each i, h(0) =
near theorigin.

Assume that the Jacobian linearization of {4.25) is stabilizableand that the
equilibrium z = 0 of z = f{z) is locally exponentially stablewith a region of
attraction 4 C . Let {) = (), x Q- C R" x 1 be an arbiirary compact set.
Then there exists consiants & > 0 such that, for any 0 < e < &, the equi-
librium (£, 2) = (0,0) of (4.25) is locally exponentially stable with a linear
control law of the form

n n
u=— &l yi=y ouli+aiz
i=1 k=i

and its region of attraction contains (1. (The coefficients «. and the vec-
tors g depend on the parameters &, k > 1))

Vol. 41, n® 2, 2000 éa
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0 and Dh{0) = 0, that is, h is at least quadratic
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5 Conclusion

This paper has addressed the semiglobal stabilization by linear feed-
back ofa large class of feedforward nonlinear systems.

We have used the Lyapunov construction proposed in [8] for the global
stabilization of feedforward systems to estimate the gains of the linear
controller needed to achieve a prescribed regicn of attraction.

We have identified particular situations in which the tuning of the gains
can be achieved with increasing powers of a single parameter.

We have shown that such a simple tuning may cause vanishing regions
of attraction for general feedforward systems.

In this case, the tuning of n independent parameters must be achieved
in a recursive way to guarantee arbitrarily large regions of attractions.

A Converse theorems

The converse theorem used in Section 2 can be deduced from standard
converse theorems, see for instance [5]. A simple proof, given in [10,
Lemma B.1.], defines the Lyapunov function Uiz) as the line integral

[zt s
J1{)

where z(s) is a sclution of the scaled system
1

Eirmer =

The time-derivative of U along the soluticns of z =

U(z) (A.26)

2(0) ==
f(z) yields

U=LU(z) = < —[l=l®

—(L+ 7)1l =]

On the other hand, thanks to the linear growth of £

1, sup

PN < Lel, 2= max{1,
z||<1

af
5@4

}

~oL 2P

We Ccan use

2 el = 257 (3) >

® ars
)= c
0

The same dsfinition (A.26) can be used for the converse theorem in Sec-

to obtain |z(s)f = e,

|2l ds = 2]

tion 4, that is, when the region of z = 0 is an open set 1 C 5. We only
need fo establish the additional property
lim U(z) = +o0 (A.27)

8.4

Choaose & = 0 such that the ball B{0,4) of radius & > 0 is contained in .
For each z € A/B(0, §); define T{z) = 0 as the time needed for the solu-
tion 2{s) to reach the ball B(0,8), that s,

T(z)= mf{f (L)) <6}
Then we have for each z € A/B(0, 8) :
) > f 2(s)||Pds > T(z)0

By standard stability theorems (see for instance [5, Theorem 33.2)). T(z)
»=asz -1, which proves the property (A.27).

E Vol. 41, n® 2, 2000
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